Showing 3 results for Wettability
Paydar M.h., Fadaei R., Shariat M.h.,
Volume 2, Issue 2 (6-2005)
Abstract
Copper coated SiC powders having three different amounts of copper, in the range of 20-60 wt%, were prepared via electroless coating process. The produced composite powders were uniaxially cold compressed and sintered at different temperatures and times under protective atmosphere. It was found that composite Cu/SiC powders and a relatively dense copper matrix composite with a uniform distribution of SiC reinforcing particles imbedded in copper matrix can be fabricated via electroless coating method followed by conventional cold pressing and sintering process. The results also show that SiC particles have a poor wettability with copper and so liquid phase sintering of the Cu/SiC composite powders did not enhance densification of the samples. Regarding this fact, optimum sintering temperatures, which depends on copper content, was determined to be in the range of 1050-1080?C.
Hella Houda, Guettaf Temam Elhachmi, Hachemi Ben Temam, Saâd Rahmane, Mohammed Althamthami,
Volume 21, Issue 4 (12-2024)
Abstract
In this study, we thoroughly examine β-Bi2O3 thin films as potential photocatalysts. We produced these films using an environmentally friendly Sol Gel method that is also cost-effective. Our research focuses on how different precursor concentrations, ranging from 0.1 M to 0.4 M, affect the photocatalytic performance of these films. We conducted a comprehensive set of tests to analyze various aspects of the films, including their structure, morphology, topography, optical properties, wettability, and photocatalytic capabilities. These tests provided us with a well-rounded understanding of the films' characteristics. To assess their photocatalytic efficiency, we used Methylene Blue (MB) as a contaminant and found that the films, particularly those with a 0.1 M concentration, achieved an impressive 99.9% degradation of MB within four hours. The 0.1 M film had a crystalline size of 39.7 nm, an indirect band gap of 2.99 eV, and a contact angle of 51.37°. Our findings suggest that β-Bi2O3 films, especially the 0.1 M variant, have promising potential for treating effluents from complex industrial dye processes. This research marks a significant step in utilizing sustainable materials to address pollution and environmental remediation challenges.
Fatemeh Rafati, Narges Johari,
Volume 22, Issue 3 (9-2025)
Abstract
It must be recognized that the degree of this factor will influence how well wound-healing materials perform water absorption, protein interaction, and cellular adhesion. In the present study, we are concerned with studying the effects of polyethylene glycol (PEG) and curcumin (Cur) on the hydrophilicity of silk fibroin (SF)/linen (LN) composite films. The SF and LN composite films were blended at an equal mass ratio of 1:1, and PEG and Cur were also added to induce changes in surface properties. Fourier-transform infrared analyses showed that intermolecular interactions and hydrogen bonding were formed among the components in the blends. There was a very obvious hydrophobicity reduction by the addition of Cur and PEG/Cur, as exemplified by the static water contact angle measurements: simply addition of Cur to SF lowered the contact angle from approximately 100° to 72°, whereas a co-addition of PEG and Cur produced the greatest reduction (64°), equalling 70%. The synergistic effect in the surface wettability enhancement occurs because both additives introduce polar moieties onto the surface and partially disrupt the SF crystalline structure. Water uptake and cell viability tests further verified the hydrophilicity and biocompatibility of PEG/Cur-modified SF/LN films. This promotes the use of PEG/Cur-modified SF/LN blends as hydrophilic, bioactive materials suited for advanced wound dressing and tissue engineering scaffolds.